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The concept of a probability distribution is in the core of all modern data-driven modeling, simulation, 

analytics, inference, prediction, and prognostication of observable natural phenomena. Despite the 

large number of possible probability distributions and their significant heterogeneity, only dozens of 

distributions are named and well understood, many are interconnected, and all of them span the 

universe of all possible physical processes. This manuscript presents the probability Distributome, 

which allows navigation, exploration and learning of many univariate distributions, and facilitate the 

computation and visualization associated with univariate, bivariate and trivariate probability 

distributions. We illustrate applications of three specific resources including an HTML5/JavaScript 

applications (http://Distributome.org), RShiny apps (https://socr.umich.edu/html/dist) and 2D and 3D 

Plotly apps (https://socr.umich.edu/HTML5/BivariateNormal/BVN2/). These resources are freely 

accessible, open-source, and platform agnostic. Both learners and instructors may utilize, expand, 

improve, and customize these tools for their specific research and education needs. 

 

INTRODUCTION 

Statistics is the study of data (ID Dinov, 2018). It can tell you when to plant crops for the best 

harvest, when to invest in the stock market, and a multitude of other things. Mathematical statistics and 

modelling form the core of modern data science, AI systems and Machine Learning forecasts for risk 

analysis. It takes previously collected data and through a method of mathematical formulations, 

computational algorithms and visual representations forms a complex story of the past, present, and 

potential future. For example, companies use statistical forecasting methods to estimate customer 

shopping patterns and increase their sales (Shang, McKie, Ferguson, & Galbreth, 2020). YouTube uses 

Machine Learning and AI algorithms to form a list of recommended videos to watch next for each 

viewer (Tanzil, Hoiles, & Krishnamurthy, 2017). And governments employ computational statistics to 

form both short term and long term macroeconomic policies (Kuziemski & Misuraca, 2020). 

There are many different types of probability distributions that are used in the modern world, 

but they can all be divided into two broad categories (I. Dinov, Siegrist, K, Pearl, DK, Kalinin, A, 

Christou, N, 2015; Forbes, Evans, Hastings, & Peacock, 2011). Discrete distributions deal with variables 

and data that can be arranged into a limited number of classes or categorical labels. Continuous 

distributions deal with data that covers a continuous space, such as the set of all real numbers. As an 

example, a discrete distribution may model the event of rolling a die several times and predicting the 

individual outcomes, whereas a continuous distribution may model the distance Olympic javelin 

throwers can throw a javelin. These distributions are also studied based on the number of variables they 

try to model and account for. If a distribution only models a single variable, then it is called a univariate 

distribution. Modeling processes involving two variables requires bivariate distributions, three variables 

- trivariate distributions, and more variables correspond to multivariate distributions. 

Distributions are further divided based on the processes and data they model, from coin tosses 

and dice rolls to radioactive decay, to frequencies of encounters, to name but a few. The most well-

known and commonly seen distribution is the normal distribution, and under classical parametric 

assumptions is used as the default distribution. Furthermore, the central limit theorem (CLT) provides 

a justification for the popularity of the Normal distribution as the gravitational black hole in the universe 

of all “nice” probability distributions (I Dinov, Christou, & Sanchez, 2008). The normal distribution can 

be used as a model of heights of all people in a country, or the blood pressure in all hospital patients. 

Some notable other distributions are the Binomial distribution, which is a discrete distribution that is 

most often used for coin flips or other binary choices, the Poisson distribution, which can be used to 

describe radioactive decay and the number of mutations in genes, and the Geometric distribution, which 

studies the probability of a successful binary choice being encountered after 𝑘 trials.  

Unfortunately, univariate distributions have a limited scope of applications in the real world, as 

they only represent scalar processes, without considering the multiple factors influencing the state of 

events. This is where multivariate probability distributions come in. Seeing how different probability 
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distributions and variables interact with each other, subject to certain dependencies, may help to predict 

more complex and realistic world interactions. As an example, consider a producer-consumer pair 

subject to some environmental constraints (limited substrate). The relation between the two entities can 

be described in a trivariate statistical model of the sizes of the produced and consumed products relative 

to the available substrate. For instance, the prices of cars depend on raw materials, the manufacturing 

supply (production), and the consumer demand (consumption). Changes in either of these affect the 

other. This process forms a cycle that will center around a certain equilibrium point where the number 

of goods (produced and consumed) reaches a sustainable level based on the available environmental 

resources (substrate), Figure 1. The simulation in this figure is generated by solving the Volterra-Lotka 

ordinary differential equation model of species competition, under some specific initial parameters (Hsu 

& Zhao, 2012). This cycle can also be modelled as a bivariate probability problem, where a particular 

probability reflects the chances of each entity to be at certain level (size or number of goods). Figure 2 

illustrates an example of a bivariate probability density function. 

Computing multivariate statistical distributions requires more than just a simple product of the 

univariate probabilities. Correspondingly, the mathematical formulations required to fully describe 

multivariate processes are naturally more intricate. Such mathematical models of naturally occurring or 

man-made phenomena are useful and can generally be enhanced with specific illustrations of their 

practical utilizations. Visualizing probabilities corresponding to univariate distributions can easily be 

accomplished using areas under planar density curves. Figure 3 shows a univariate normal distribution 

as a 2D graph. The correspondence between critical values on the horizontal axis and probability values, 

areas under the density curve, can be explored with sliders or via numerical entries. For example, once 

we specify the distribution parameters, in this case the distribution mean and variance, we can enter 

either a critical value on the x-axis or a corresponding cumulative probability value as the shaded area 

under the density over the specified range. 

 

  

Longitudinal processes (time-series) 
Bivariate relation between production and 

consumption of goods subject to available resources 

 

Figure 1. Relations between environmental factors (substrate), level of product production (producer) 

and the corresponding level of product consumption (consumer). Left and right images show the 

longitudinal changes of all 3 components (substrate, production, and consumption), and the cyclical 

relation of the levels of production and consumption of the product, respectively. 

 

 Probability visualization becomes considerably more challenging for multivariate distributions 

that may combine several univariate processes to generate a joint model of a multivariate process 

representing a vectorized outcome. A univariate distribution may be manipulated by specifying a data 

point (critical value) or by fixing the associated cumulative probability value (p-value) and recovering 

the corresponding critical value. The simplest case for specifying the domain range in a bivariate 

distribution case involves two degrees of freedom - two parameters for controlling the upper limit of the 

rectangular area (critical range) - to compute the corresponding cumulative probability value. Going a 

step further, the simplest models of trivariate processes, or more generally multivariate processes, 
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require higher order of controls for navigating multivariate probability distributions, which increase 

linearly with the dimensionality of the process. Therefore, when computing or visualizing trivariate 

probability distributions, special mechanisms are necessary to facilitate the interaction, interpretation, 

and display of the corresponding relation between critical domain restrictions and the corresponding 

cumulative probability values. The Probability Distributome Project (www.distributome.org) provides 

simple strategies to visualize the universe of many univariate distributions, examine their interrelations, 

explore their individual properties, as well as display and compute critical and probability values (I. 

Dinov, Siegrist, K, Pearl, DK, Kalinin, A, Christou, N, 2015). However, in general, there are fewer 

mechanisms for visualization of bivariate, trivariate and higher-order variate probability distributions. 

 

 
 

Figure 2.  Bivariate probability of the deer 

(variable Y) and lynx (variable X) populations, 

each modeled as a normal distribution 

Figure 3. Univariate Normal distribution example 

 

INTERACTIVE PROBABILITY RESOURCES 

There are several open-sourced visualization solutions for probability distributions available.  

The Probability Distributome Project (www.distributome.org) mentioned earlier has a number of 

HTML5 based applications on its website. These web applications allow the visualization, calculation, 

and sampling of 47 different univariate probability distributions. A sample use case of the Probability 

Distributome Project has been shown in Figure 3 illustrating a screenshot from the Normal Distribution 

Interactive Calculator application from the Distributome website. In this application, one can specify 

the parameters of the normal distribution, mean and standard deviation, and the calculator generates the 

corresponding PDF or CDF plot. Specifying a data point and the application will automatically compute 

the corresponding p-value, or vice versa. For example, to find the critical value that corresponds to a 

left-tail p-value of 0.68 in a normal distribution with mean of 0.3 and standard deviation of 4.0, we could 

use the sliders to specify the parameters and type 0.68 into the input box on the right. The calculator 

would then return a critical value 2.171, and the left-tail of the normal distribution becomes shaded. 

Figure 4 below shows the output of the application from these actions. The Probability Distributome 

Project also provides a Navigator (http://distributome.org/V3/) that describes the properties of each 

probability distribution in-detail while visualizing the relationships among the distributions. In the 

Navigator, learners can simply select a node representing a specific probability distribution or type in 

the name of the distribution in the search bar to learn more it. For example, searching for “geometric” 

will yield the properties of the Geometric Distribution and navigate to its corresponding Distributome 

web application. Figure 5 below shows an example using the Navigator. 

Another open-source computation and visualization tool for univariate probability distributions 

is the SOCR Probability Distribution Calculator (https://socr.umich.edu/html/dist/) (Chu, Cui, & Dinov, 

2009). This web application is developed using R and the RShiny package as an all-in-on tool for up to 

75 univariate probability distributions. For each supported distribution, the app allows computing, 

visualizing, and interacting with its corresponding PDF and CDF plots, while also learning about its 

properties. Similar to applications in the Probability Distributome Project, learners can also specify the 

input parameters of the distribution and the application will compute critical values and p-values given 

the inputs. However, the SOCR Probability Distribution Calculator supports the computation between 
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two data points, instead of only the left-tail probabilities. Figure 6 below shows a use case of this ap-

plication. In this example, to compute the p-value corresponding to the area between 3.4 and 5.8 in an 

exponential distribution model with an input parameter of 0.5 for lambda, we can select the plot type in 

the upper-left corner of the application and enter 0.5 to specify the distribution parameter. Using the 

sliders, we can select the range between 3.4 and 5.8 on the PDF plot of the exponential distribution, and 

the application computes the approximate probability (12.77% in the given range). By using the switch 

on top of the plot, we can also switch from sliders to textboxes for improved input accuracy. By clicking 

on the camera icon at the top-right corner of the plot, we can also save the generated plot locally as 

images. 

 

These two tools are both designed only for computations using univariate probability distributions. 

However, in practice, the use of multivariate distributions is also very common. The following tools can 

be helpful in the computation of bivariate and trivariate normal probability distributions. The Bivariate 

Normal Distribution Interactive Calculator (3D) is an open-source computation and visualization tool 

developed using JavaScript. This tool allows the learners to input the parameters for two univariate 

normal distributions as well as the correlation coefficients between the two distributions 

(https://socr.umich.edu/HTML5/BivariateNormal/BVN2/). The app will automatically generate a 3D 

plot for the resulting joint normal distribution, which can be rotated and interactively manipulated.  

 

 
 

Figure 6. SOCR Probability Distribution Calculator example 

 

 
Figure 4: Probability Distributome Normal Distribution 

Interactive Calculator. 

Figure 5: Probability Distributome Project 

Navigator example. 
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The Bivariate calculator includes input controls on the ranges of the two normal distributions. 

After specifying these controls, the Bivariate calculator will compute and visualize the corresponding 

probability values for the individual univariate normal distributions as well as the joint distribution. 

Additionally, the calculator can also compute the conditional probabilities of one variable given the 

value of the other variable. Figure 7 below shows a use case with the Bivariate calculator. 

 

 
 

Figure 7. Bivariate Normal Distribution Interactive calculator (3D) example 
 

In this example, two univariate normal distributions are specified. Distribution X has a mean of 

3 with a standard deviation of 4, and distribution Y has a mean of 3.5 with a standard deviation of 7. 

The correlation coefficient between the two distributions is -0.4. After the joint distribution PDF of the 

two univariate normal distributions is plotted on the left of Figure 7, we can modify the ranges of the 

two distributions: X has a range of values between -4 and 2, and Y has a range between negative infinity 

and 4. The app estimates the probability of the joint distribution and the X marginal distribution. 

Toggling on the “Marginal of X” option yields the joint distribution p-value (0.1404) and the 

corresponding marginal probability (0.361). The univariate normal distribution PDF for X with the 

range of interest is also plotted in a 2D graph on the right of Figure 7. 

  The Trivariate Distribution 3D Calculator is also developed using JavaScript. This Trivariate 

calculator (https://socr.umich.edu/HTML5/BivariateNormal/TVN/) is an open-source tool that allows 

the computation and visualization of the joint distribution among three univariate distributions. Different 

from the Bivariate calculator, the Trivariate calculator allows the learners to select among 40 

distributions for each of the three univariate distributions. Following the univariate distributions 

selection, we can specify the parameters of the three marginal distributions as well as the correlational 

coefficients among the distributions. We can also specify the ranges of each variable, similar to the other 

tools discussed earlier. The corresponding probabilities are computed and displayed on the interactive 

3D plots. The following is a use case example for the Trivariate calculator.  

Let’s consider a normal distribution with mean of 1 and standard deviation of 4 for the first 

marginal, another normal distribution with mean of 0 and standard deviation of 0.5 for the second 

marginal, and a uniform distribution with lower bound of -10 and upper bound of 10 for the last marginal 

distribution. The correlation coefficient is 0.3 between distributions X and Y, 0.5 between X and Z, and 

0.4 between Y and Z.  Then, we can use the Controls section of the graph setting to specify the joint 

distribution for X in the range between 0 and 3, Y between 0 and 1, and Z between -3 and 0.  

With all the settings specified, the Trivariate calculator computes and displays the 

corresponding joint distribution probability. Figure 8 below shows the output of the Trivariate 

calculator. In the Probability Results section, it shows that the p-value of the trivariate distribution is 

0.026 with the given ranges. It also shows that the p-values of the bivariate joint distribution of Y and 

Z is 0.065 with the given ranges, and the univariate probability value for Z is 0.155. 

The corresponding plots for these distributions are generated and displayed below the 

Probability Results section. The plot on the left of Figure 8 shows the PDF for the univariate uniform 

distribution for distribution Z, where the range of Z values are in red. The 3D surface plot in the middle 

of Figure 8 shows the PDF for the bivariate joint distribution between distributions Y and Z, and the 

3D (volume) plot on the right shows the PDF of the trivariate joint distribution in a Point Cloud format.  
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CONCLUSION 

Modern technology provides powerful instructional aides to enhance the traditional STEM 

curricula by integrating observational data, dynamic simulations, and Cloud services. These resources 

have potentials to improve K-16 and higher education achievements. This manuscript presents examples 

of interactive probability calculation resources that can be used for teaching and applications of 

univariate and multivariate processes modeled by specific probability distributions. The joint calculation 

of marginal, joint and conditional probabilities along with the interactive visualization of the 

corresponding regions and probability values may be useful in certain educational settings. These 

probability calculators, relevant learning modules and educational resources, multivariate datasets, and 

training materials are available on the SOCR website (https://SOCR.umich.edu). 

 

 
Figure 8. Trivariate Distribution 3D Calculator example 
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